) 가 가 (Д 3 1. 2. Bioscrubber 3. Bioscrubber (, ,) 10~100

- i -

가

- ii -

SUMMARY

I. Title

"Development of an integrated plasma and bioscrubber system for the treatment of odorous compounds emitted from livestock industries in city of Yong-In"

II. Objectives and Importance

- Due to high cost, inefficiencies and maintenance problems, many odor treatment methods often fail to meet the demands of small-scale livestock industries.
- In most areas of the city of Yong-In, odor complaints have become a serious environmental problem because residential areas are often located close to livestock farms.
- Therefore, the development of an efficient technology is strongly required to successfully treat the odorous compounds emitted fro the live stock industries.
- In this research, a novel, integrated system combining a plasma reactor and a biological scrubber has been investigated to solve the odor problem that the city of Yong-In is facing.

III. Research scope

The integrated system is being developed and investigated according to the research plan with three main tasks;

- 1. Construct a plasma reactor and experimentally determine removal efficiencies of target odor compounds in the plasma reactor.
- 2. Design a bioscrubber and perform a series of experiment to observe removal efficiencies of the odor compounds.
- 3. Find an optimal condition to combine the plasma reactor and the bioscrubber in series.

IV. Results

A novel plasma reactor was developed and tested for gas streams

contaminated with three different compounds (hydrogen sulfide, ammonia, and toluene) at the inlet concentration of $10\sim100$ ppm and the gas retention time of $5\sim30$ seconds.

- The plasma reactor was able to successfully remove hydrogen sulfide, ammonia and toluene form the gas streams, implying that it is suitable for the application of the integrated system.
- With increasing the specific energy input, the H₂S removal efficiency increased. However, the removal efficiency reached a maximum at the specific energy input of 1.6 J/L and higher. As a result, the plasma reactor can be operated in its optimum when the specific energy input of 1.6~2 J/L is applied.
- The experimental results also suggest that the gas retention time of 10 seconds is the point where a stable removal efficiency can be achieved at a minimal reactor volume.

VI. Application plan

- For the integrated system, every efforts are being devoted to develop a novel bioreactor system and to transfer the technology to an industrial sector for commercialization.
- Therefore, the system is being developed to prove a more flexibility in configuration and operation for any possible applications.
- Potential areas of applications could be various livestock industries including indoor air quality control for pigpens and stalls, livestock wastewater treatment facilities, composting facilities and others.

CONTENTS

Summary (Korean)	
Summary (English)	
Contents	
Chapter 1. Introduction	1
1. Importance of the proposed research	2
1.1 Background ·····	2
1.2 Odor problems of livestock industries in city of Yong-In	4
2. Research objectives	8
2.1 Main objective	8
2.2 Specific objectives	8
Chapter 2. Technology status	9
1. Domestic technology status	10
1.1 Odor treatment technologies	10
1.2 Biological odor treatment methods	13
1.3 Plasma technologies for odor control	15
2. International technology status	18
Chapter 3. Experiments	20
1. Research plan and scope	21
1.1 Non-thermal plasma reactor	21
1.2 Bioscrubber	21
1.3 Integrated plasma-bioscrubber system	22
2. Configuration of plasma reactor	23
2.1 Plasma generator	23
2.2 Power supply	25
3. Plasma experiments	26

3.1 Plasma reactor system26
2.1 Odor gases27
2.1 Odor measurements27
Chapter 4. Results and Discussion29
1. Results30
1.1 Hydrogen sulfide removal in the plasma reactor
1.2 Ammonia removal in the plasma reactor
1.3 Toluene removal in the plasma reactor
2. Criteria for the plasma reactor design38
2.1 Specific energy input38
2.2 Gas retension time39
Chapter 5. Achievements and Contribution40
1. Expectation41
2. Future plan of applications and Feasibility of commercialization43
2.1 Research plan43
2.2 Feasibility of commercialization44
Chanter 6 Reference

	•••••		
SUMN	//ARY	′	
CONT	ENT	S	
1			1
1.			2
	1.1		2
	1.2		4
2.			8
	2.1		8
	2.2		8
2			9
1.			0
	1.1		0
	1.2		3
	1.3		5
2.			8
3		20	0
1.		2	1
	1.1	2	1
	1.2	Bioscrubber 2	1
	1.3	22	2
2.		23	3
	2.1	23	3
	2.2	25	5
3.		20	6

	3.1	2	26
	3.2	가	27
	3.3	2	27
4			29
1.			30
	1.1		30
	1.2		36
	1.3		37
2.			38
	2.1		38
	2.2		39
5			4 C
1.			11
2.			43
	2.1		43
	2.2		14
6			15